ANNUAL REPORT FOR 2007 Unnamed Tributary to Briery Run Mitigation Site (Crescent Road Site) Lenoir County WBS Element 34501.4.1 TIP No. R-2719 WM Prepared By: Natural Environment Unit & Roadside Environmental Unit North Carolina Department of Transportation December 2007 # TABLE OF CONTENTS | SUMN | MARY | 1 | |-------|---|---------------| | 1.0 | INTRODUCTION | 2 | | 2.0 | STREAM ASSESSMENT 2.1 Stream Monitoring Requirements 2.2 Stream Description 2.2.1 Post-Construction Conditions 2.2.2 Monitoring Conditions 2.3 Results of the Stream Assessment 2.3.1 Site Data 2.3.2 Climatic Data 2.4 Conclusions | 4 5 5 5 6 6 1 | | 3.0 | REFERENCES | 1 | | | <u>FIGURES</u> | | | FIGUI | RE 1. VICINITY MAP | 3 | | | <u>TABLES</u> | | | | E 1. CROSS SECTION COMPARISONS – REACH 1
E 2. CROSS SECTION COMPARISONS – REACH 2 | | | | <u>CHARTS</u> | | | CHAF | RT 1. PARTICLE SIZE DISTRIBUTION FOR REACH 1 & REACH 2 | 9 | | | <u>APPENDICES</u> | | | | ENDIX A. CROSS SECTIONS AND LONG. PROFILE COMPARISON | | ## SUMMARY The following report summarizes the stream monitoring activities conducted during the Year 2007 along an unnamed tributary emptying into Briery Run, hereinafter referred to as the Crescent Road Site. The site, situated approximately two miles (3.2 kilometers) northeast of Kinston in Lenoir County, was designed and constructed during 2001 by the North Carolina Department of Transportation (NCDOT) in order to provide mitigation for stream impacts associated with the construction of T.I.P R-2719BA. This report provides the monitoring results for the fourth formal year of monitoring (Year 2007); however, it is actually the sixth year since construction. Based on the overall monitoring assessment, the Crescent Road Site has met the required monitoring protocols for the fourth formal year of monitoring. The upper and lower reaches are stable but the upper reach has experienced some aggradation and degradation since the last monitoring evaluation. There is extensive growth of vegetation throughout the stream corridor, both within and outside of the bankfull limits associated with the channel. All nine of the cross sections along the unnamed tributary remain stable. Based on information obtained from the US Geological Survey (USGS), the Crescent Road Site has already met the required monitoring protocols for hydrology as it relates to bankfull events. The NCDOT will continue stream monitoring at the Crescent Road Mitigation Site for 2008. ## 1.0 INTRODUCTION ## 1.1 Project Description The following report summarizes the stream monitoring activities that were conducted during the Year 2007 at the Crescent Road Site. The site is situated immediately south and adjacent to C.F. Harvey Road (Crescent Road) in the western portion of Lenoir County (Figure 1). It lies approximately 2 miles (3.2 kilometers) northeast of Kinston. The Crescent Road Site was constructed as an on-site stream mitigation project in order to provide mitigation for stream impacts associated with the construction of R-2719BA. The US Army Corps of Engineers (USACE) permit for R-2719BA dated June 12, 2001 states that the Crescent Road onsite mitigation site is to provide a minimum of 0.58 acres of riverine wetland restoration and 1,706 linear feet of stream restoration to offset unavoidable impacts imposed by the adjacent roadway project. According to the as-built drawings of the site, the site actually restored 3.71 acres of riverine wetland restoration, 2,291 linear feet of stream restoration, and 7.6 acres of Neuse River buffer. The NCDOT plans to use the additional available credits, above and beyond the credits required by the USACE permit, to offset future mitigation needs in the surrounding area. Design and implementation of the Crescent Road Site were implemented during 2001. The majority of the proposed stream restoration involved the construction of a new, stable channel exhibiting the characteristics (dimension, pattern and profile) consistent with data obtained from a nearby reference reach. One minor area of in-channel stabilization existed. Rootwads and rock vanes were installed to provide the required immediate stabilization to properly allow for the reestablishment of riparian vegetation. New floodplain areas were excavated and the adjacent streambanks were sloped to further to reduce overall erosion. # 1.2 Purpose In order for a mitigation site to be considered successful, the site must meet the success criteria stated in the permit conditions and approved mitigation plan. This report details the results of the stream monitoring in 2007 at the Crescent Road Mitigation Site. Vegetation and hydrologic monitoring were completed but will not be included in the stream monitoring report. The stream monitoring in 2007 reflects the fourth formal year of monitoring following the restoration efforts; however, it is the sixth year since construction. Included in this report are analyses of the longitudinal profile, cross sections, pebble counts and site photographs. # 1.3 Project History Summer/Fall 2001 Construction Completed. October 2004 Stream Channel Monitoring (Year 1) July 2005 Stream Channel Monitoring (Year 2) June 2006 Stream Channel Monitoring (Year 3) November 2007 Stream Channel Monitoring (Year 4) #### 2.0 STREAM ASSESSMENT # 2.1 Stream Monitoring Requirements Based on the permit conditions associated with Action ID. 19991192, TIP R-2719BA, dated June 12, 2001, the following monitoring protocols were required for this project: US Army Corps of Engineers (USACE): - 1. The permittee shall contact the USACE, Washington Regulatory Field Office NCDOT Regulatory Project Manager and provide him with the opportunity to attend the annual mitigation monitoring efforts. - 2. The permittee will submit the annual mitigation reports by December 31 of each monitoring year. NC Division of Water Quality (NCDWQ): - Stream Restoration/Mitigation Success Criteria NC Division of Water Quality - a) Duration: 5 years from end of construction (channel modifications and vegetation planted) based on the fact of 1.4-1.7 year bankfull return period. - b) Reporting Three (1st, 3rd, 5th years) Monitoring Reports sent at end of yearly monitoring period to the US Army Corp of Engineers (USACE) and the NC Division of Water Quality (NCDWQ) 401 Wetlands group. - 2. Streams Geomorphology [based on which parameters are restored (dimension, pattern, profile)] - a) Dimension - 1.) Permanent Cross-sections (surveyed or GPS) need to be established (1 per 20 bankfull width) lengths - 2.) Based on reference streams and stream curves - 3.) Measurements: W/D Ratio, Entrenchment Ratio, Low Bank Height Ratio (low bank height/max bankfull depth) - b) Pattern - 1.) Plan View of project site - 2.) Based on valley type/stream type - 3.) Measurements: Sinuosity, Meander Width Ratio, and Radius of Curvature (on newly constructed meanders only 1st year monitoring) - c) Profile - 1.) Longitudinal profile Based on stream type 2.) Measurements: Slope (average, pool, riffle), pool to pool spacing Materials 3.) Pebble counts Based on reference stream and stream type - 4.) Established d50 and d85 should increase in coarseness in riffles, increase in fineness in pools - 5.) Measurement: Sampling based on % of Pools and Riffles - d) Photo Reference Points - 1.) One per Cross-section (show banks and channel) - 2.) Several structures # 2.2 Stream Description #### 2.2.1 Post-Construction Conditions The mitigation of the unnamed tributary to Briery Run involved new channel construction along two reaches, additional floodplain excavation and stream bank stabilization. A combination of rock vanes and rootwad revetments were used to provide immediate stabilization for the re-vegetation of the project site. Native trees and shrubs were planted to provide long-term bank stabilization. Three culverts were installed along the unnamed tributary and control channel gradient. ## 2.2.2 Monitoring Conditions The unnamed tributary to Briery Run was designed to follow E5 stream type morphologies according to the Rosgen Classification of Natural Rivers. The project is separated into two reaches separated by the culvert situated under Crescent Road. A total of nine cross-sections were surveyed (four on Reach #1 and five on Reach #2). #### 2.3 Results of the Stream Assessment #### 2.3.1 Site Data The assessment included the survey of nine cross sections along the two reaches, and the longitudinal profile of the unnamed tributary. The length of the profile was approximately 1,618 linear feet (1,118 linear feet of Reach #1 and 500 linear feet of Reach #2). No cross sections had been established prior to the 2004 monitoring year. Cross section locations are presented below. Benchmark stakes were installed on both the left and right stream banks for each cross section location. The layout comparisons of the cross sections and longitudinal profiles are shown in Appendix B. - Cross Section #1. UT to Briery Run, Reach #1, Station 1+96, midpoint of riffle - Cross Section #2. UT to Briery Run, Reach #1, Station 4+33, midpoint of glide - Cross Section #3. UT to Briery Run, Reach #1, Station 6+00, midpoint of riffle - Cross Section #4. UT to Briery Run, Reach #1, Station 8+39, midpoint of riffle - Cross Section #5. UT to Briery Run, Reach #2, Station 2+00, midpoint of riffle - Cross Section #6. UT to Briery Run, Reach #2, Station 4+45, midpoint of riffle - Cross Section #7. UT to Briery Run, Reach #2, Station 6+15, midpoint of run - Cross Section #8. UT to Briery Run, Reach #2, Station 8+11, midpoint of riffle - Cross Section #9. UT to Briery Run, Reach #2, Station 10+62, midpoint of run The nine cross sections were established during the 2004 monitoring survey are being monitored on a yearly basis to determine the actual extent of aggradation or degradation. All of the cross section locations appeared stable when compared to the previous years monitoring data. Morphological comparisons are presented in the charts depicted below. Appendix A depicts each cross section comparison as well as a summarized table of morphological variables. | Variable | Proposed | Cross
Section #1
(Riffle) | Cross
Section #2
(Glide) | Cross
Section #3
(Riffle) | Cross
Section #4
(Riffle) | Min Max Values
(Riffle Sections Only) | | |---|----------|---------------------------------|--------------------------------|---------------------------------|---------------------------------|--|--------------| | | | 2007 | 2007 | 2007 | 2007 | 2006 | 2007 | | Drainage Area (sq. mi) | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | 0.21 | | Bankfull Width (ft) | 8.9 | 7.5 | 8.95 | 10 | 8 | 7.2 - 10.0 | 7.54 - 10 | | Bankfull Mean Depth (ft) | 1.0 | 0.98 | 0.95 | 0.71 | 0.89 | 0.8 - 1.1 | 0.71 – 0.97 | | Width/Depth Ratio | 9.0 | 7.65 | 9.42 | 14.08 | 8.99 | 7.2 - 12.8 | 7.77 – 14.08 | | Bankfull Cross Sectional
Area (ft ²) | 8.7 | 7.33 | 8.54 | 7.06 | 7.15 | 7.8 - 9.1 | 7.06 – 7.33 | | Maximum Bankfull Depth (ft) | 1.5 | 1.75 | 2.16 | 1.31 | 1.54 | 1.7 - 1.9 | 1.31 – 1.75 | | Floodprone Area (ft) | 28.9 | >100.0 | >100.0 | >100.0 | >100.0 | >100.0 | >100.0 | | Entrenchment Ratio | 3.3 | 5.13 | 4.66 | 4.31 | 4.31 | 10.0 - 13.9 | 4.31 – 5.11 | | Average Slope | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 | | Bank Height Ratio | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Variable | Proposed | Cross
Section #5
(Riffle) | Cross
Section #6
(Riffle) | Cross
Section #7
(Run) | Cross
Section #8
(Riffle) | Cross
Section #9
(Run) | Min Max Values
(Riffle Sections Only) | | |---|----------|---------------------------------|---------------------------------|------------------------------|---------------------------------|------------------------------|--|--------------| | | | 2007 | 2007 | 2007 | 2007 | 2007 | 2006 | 2007 | | Drainage Area (sq. mi) | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | 0.24 | | Bankfull Width (ft) | 16.7 | 16.82 | 20.67 | 10.68 | 8 | 16.59 | 8.7 – 18.6 | 8 – 20.67 | | Bankfull Mean Depth (ft) | 0.9 | 0.85 | 0.86 | 0.91 | 0.98 | 0.57 | 0.9 – 1.0 | 0.85 – 0.98 | | Width/Depth Ratio | 19.6 | 19.79 | 24.03 | 11.74 | 8.16 | 29.11 | 9.2 – 21.0 | 8.16 – 24.03 | | Bankfull Cross Sectional
Area (ft ²) | 14.2 | 14.23 | 17.68 | 9.72 | 7.82 | 9.51 | 8.2 – 16.6 | 7.82 – 17.68 | | Maximum Bankfull Depth (ft) | 1.7 | 1.85 | 2.11 | 1.98 | 1.86 | 1.55 | 1.7 – 2.0 | 1.85 – 2.11 | | Floodprone Area (ft) | 28.9 | >100.0 | >100.0 | >100.0 | >100.0 | >100.0 | >100.0 | >100.0 | | Entrenchment Ratio | 6.0 | 1.8 | 1.83 | 3.58 | 4.94 | 2.91 | 5.4 – 11.5 | 1.8 – 4.94 | | Average Slope | 0.008 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | 0.004 | | Bank Height Ratio | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | | Particle Sizes | Proposed | 2004 | 2005 | 2006 | 2007 | 2008 | |----------------|----------|------|------|------|------|------| | D16 (mm) | | N/A | N/A | 0.02 | 0.01 | | | D35 (mm) | | N/A | N/A | 0.04 | 0.03 | | | D50 (mm) | 0.2 | N/A | N/A | 0.05 | 0.04 | | | D84 (mm) | | N/A | N/A | 0.11 | 0.08 | | | D95 (mm) | | N/A | N/A | 0.19 | 0.11 | | According to the data collected during 2007, the average slope of the channel was 0.006. Pool slopes, ranging between 0.023 and 0.7, as well as riffle slopes, ranging between 0.004 and 0.7, also remained consistent along both reaches. The average pool and riffle slopes were 0.4 and 0.4, respectively. The pool to pool spacing averages approximately 59 feet between pools. A representative pebble count was taken throughout the surveyed reach. This information is used to determine the stream type. Pre-construction data proposed the D_{50} for Crescent Road Mitigation Site to be 0.2 mm. The pebble counts taken during the Year 2007 monitoring period noted that the D_{50} (50 percent of the sampled population is equal to or finer than the representative particle diameter) for the entire reach of Crescent Road Mitigation Site was approximately 0.4 mm, which is indicative of a sand-bed stream. The graph depicting the 2007 particle size distributions for the entire reach of the Crescent Road Mitigation Site is presented below. Chart 1. Particle Size Distribution for Reach 1 & 2 Longitudinal profile surveys were conducted along both restored segments of the unnamed tributary (Appendix A). Bank stability was assessed during the cross section and longitudinal profile surveys. The longitudinal profile along the upper reach shows some aggradation at the beginning of the profile and some degradation at the end of the upper reach. This change in the stream profile is probably due to some pipe being installed along the right-of-way. The longitudinal profile survey along the lower reach could not be conducted from Station 911 to 1061 along the longitudinal profile tape. Vegetation was too thick and tall in this area for the survey equipment to function properly. This portion of the stream was visually inspected and the stability of channel was in good condition. Herbaceous vegetation continues to dominate the entire area associated with both reaches, both within and outside of the bankfull limits. Although the stream profile has been somewhat altered since construction, the channel is still very stable and highly vegetated. ## 2.3.2 Climatic Data Monitoring requirements state that at least two bankfull events must be documented through the five-year monitoring period. No surface water gages exist on the unnamed tributary or its receiving water, Briery Run. A review of known USGS surface water gages identified two gages within 10 miles (16 kilometers) of the mitigation site: one along the Neuse River in Kinston and one along Bear Creek near Mays Store, approximately 2.5 miles east of the Wayne and Lenoir County boundary. The Bear Creek gage was utilized for this report since it is the smaller of the two gages (57.7 square-mile drainage area as compared to the 2,692 square-mile drainage area associated with the Neuse River). The Bear Creek gage more accurately reflects hydrology and precipitation in the project area. It is situated in USGS Hydrologic Unit 03020202. Datum of the gage is 50 feet above sea level NGVD29. Based on the drainage area associated with the gage, the correlated bankfull discharge according to the NC Coastal Plain Regional Curves (USACE, 2003) is between 200 and 500 cubic feet per second (cfs). A review of peak flows was conducted for the period between January 2007 and November 2007. According to the graph, there were approximately six bankfull events documented during this monitoring period. This gage has met and exceeded the hydrological requirements in between 2001 and the current period. The USGS graphs depicting the peak flows occurring during 2007 is presented below. ## 2.4 Conclusions Overall, both reaches of the unnamed tributary remain stable. Some aggradation and degradation have taken place due to some pipe being installed along the right-of-way. There is extensive growth of vegetation throughout the stream corridor, both within and outside of the bankfull limits associated with the channel. All nine of the cross sections along the unnamed tributary remain stable. Based on information obtained from the USGS, the Crescent Road Site has met the required monitoring protocols for hydrology as it relates to bankfull events. #### 3.0 REFERENCES North Carolina Department of Transportation (NCDOT), 2001. Natural Channel Design for the Crescent Road Mitigation Site, UT to Briery Run, Lenoir County. Rosgen, D.L, 1996. Applied River Morphology. Wildland Hydrology, Pagosa Springs, Colorado. - US Army Corps of Engineers (USACE), 2003. Stream Mitigation Guidelines. Prepared with cooperation from the US Environmental Protection Agency, NC Wildlife Resources Commission, and the NC Division of Water Quality. - US Geological Survey (USGS), 2007. Real-time Data for USGS 0208925200 Bear Creek near Mays Store, NC. http://waterdata.usgs.gov/nc/nwis.